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Let K = Q(vd), the real quadratic field associated with the positive
square-free integer d, Ok its maximal order and s an order of index
Fin K. Let v+ vjw € Oy be and write —fw’ = [uo, 1, ...
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Introduction

denotes a positive square-free integer (therefore d ¢ 4Z). When we
ons of the Pell’s equation

.1) z? — df?y? =1,

1ere f is an integer > 1, one begins to solve the problem concerning
2) x? —dy? =1,

d one determines the solutions (a, 3) of (1.2) such that f divides a.
method used by the author of [10] and [11].

r10ther equivalent method to formulate that point-of-view is as foll

= Q(\/&), the real quadratic field associated with the positive squar
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integer d, O = Z + Zw its maximal order with

Y LVd it g =1 (mod 4)
Vid, if d=2ou3 (mod 4)

and Oy = Z + Zfw an order of index f in K. One begins to determine the
fundamental unit € of norm 1 of Of and one seeks the integers n such that €™ is
a unit relatively in Of. Commonly, equation (1.2) is known as Pell’s equation
; but this is unjustified since Pell did not make any independent contribution
to the subject. References to indeterminate equations of the Pell type occur
throughout the history of mathematics. The most interesting example arises
with the Indian mathematician Brahmagupta who studies in the 7-th century,
the equation y? = ax?+ 1, where a is an integer ; another Indian mathematician
of the 12-th century, namely Bhaskara, had been continued the works of Brah-
magupta [5] : hc has given particular solutions of the cquation z2 = 1 + py? for
p = 8,11,32,61 and 67 ; by example, when 22 = 1 + 6132, he gets the solution
(z,y) = (17776319049, 22615390). That’s why, the history of the Pell’s equation
is ambiguous. In paper [8], the author has used the length I(a) of the period
of a continued fraction expansion of the quadratic irrational number « to solve
the Pell’s equations

z? —dy®> =—-1, — 4.

Definition 1 - A real irrational number is called a quadratic irrational if it
is a root of a quadratic equation

acd® +ba+c=0
where a, b, ¢ are integers with a > 0.

The quadratic equation of definition 1 has roots

_ —b+b2—dac __ P+VD
(]"3) o = 2a - +Q
an
(1 4) &l = —b—+vb2—4ac __ P—+/D
y - 2a - Q
where

P=—-b D=0b>—4dac, Q=2a>0

are integers. If we assume that D > 0 is not a perfect square, then the roots
a and o are quadratic surds [9, Chapter two|] of the form A + BvV/D where
A =L and B = } are rational.

Under this assumptions, we state :

Definition 2 - The quadratic irrational o given by (1.3) is said to be reduced
if « is greater than 1 and if its conjugate o denotes o, given by (1.4), lies
between —1 and O :

a>1 and —1<a <O0.
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A reference of continued fraction is found in the works of the Indian math-
ematician Aryabhata, who died around 550 A.D [5]. His work contains one of
the earliest attempts at the general solutions of a linear equation ax + by = ¢ by
the use of continued fractions, that’s why, like the Pell’s equation, the earliest
traces of the idea of a continued fraction are somewhat confused. Further traces
of the general concept of a continued fraction are found occasionally in Arab
and Greek writings. It is well-known that :

Proposition 3 - [7, Chapter V] (see also [9, Chapter one]) Let x € R* be and
x = [ug,u1, ...] its continued fraction expansion. Then :
(i) the n-th reduced Z—: = [wo, ..., up] is a reducible fraction, where

p—2=0, p_1 =1, pp =ppn—1Un + Prn—2

q—2=0, g1 =1, g = @n—1Un + qn—2 ;
(ii) [woy oo, Un, ] = Hy,(x) with
T pnm+pn—l
H, () = ——M—
n(z) Gn® + Gn—1

and
7 — dn—1T — Pn—1
H 1 L7 52 = —---
" ( ) —qnZ + Pn

s Hn(-’L'n—‘ﬁl):-T; Ty = Up + .
Tn+1

Theorem 4 (Legendre) If the rational % verifies ‘az — %’ < #, then g is a
reduced of x.

Proposition 5 (Legendre) Let K = Q(+/d), the real quadratic field associated
with the positive square-free integer d, O = Z + Zw its maximal order and
O =Z+ Zfw an order of index f in K of discriminant

D = Disc(Oy) = f?Disc(Ox)

with f ( )
. d, if d=1 (mod4
Disc(Ok) = { 4d, ifd=2 ou3 (mod 4).
Write

— fw® = [ug, T, .-, Uz

for the continued fraction expansion of — fw?. If fl’—: 18 the n-th reduced of — fw?,
then pi—1 + qi—1 fw is a unit of Oy of norm N (p—1 + qu—1 fw) = (—1)%.

Proposition 3, theorem 4 and proposition 5 had led us in papers [1], [2] and
[3] to solve some Diophantine equations. In this paper, we shall be concerned
with the solvability of the Pcll’s cquations

(1.5) x? — df?y? = £1,

and
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(1.6) z? — df?y® = +4.
Our method uses the continued fraction expansion of — fw?. In section 2, we
show that if — fw? = [uo, U1, .-, Uz] is the continued fraction expansion of — fw?,

then — fw? is not in general reduced (Lemma 9). In the remainder of section 2,
assuming that v + v fw is a unit of Of, we use proposition 3 and theorem 4 to
prove that ¥ is a reduced of —fw? (Lemma 10). In section 3, we seek the units
of the ring Oy (Theorems 11, 13 and 14) by the use of the results of section 1
and 2, the discussion involving the following result proved in [6].

Lemma 6 - Let G be a subgroup of multiplicative group (R*,.). Let U =
{g € G : g > 1} admitting a smallest element «. Then

G={a"e€eG:neZ}.

In section 4, we give the description of the family of solutions for each sep-
arate equation of (1.5) and (1.6) (Theorems 16 and 19) by the same arguments
as in the results of section 3. The paper is concluded in section 5 with some
numerical examples.

2 Some lemmas concerning continued fraction
expansion of — fw?’

Lemma 7 - Let x € RY be. If x = [uo, u1,...] is the continued fraction expan-
sion of x, then
1
= (= [O, Ug, U, ] = ['Uo, U1, ] .
@
Proof. First, according to proposition 3, write :
H,, for the matrix associated to w,
K, for the matrix associated to 5.
Let 2= and = be the respective reduced of z a.nd
Next, "set :
0 1
KO = il 0 and K]_ = KOHQ 5
whence by induction we have Ky = KoHy ; then, with (ii) of proposition 3,

we have H,(+00) = Pn therefore, taking K, on both sides of that last relation,

we deduce that
Kpt+1 = Ko (&)
dn

that is to say ’s"”j:i =1 m
n

Lemma 8 - Let K = Q(\/E), the real quadratic field associated with the positive
square-free integer d, Ok its mazimal order and Oy an order of index f in K
of discrminant D = f?Disc(Ok). Let

—fw? = [uo, U1, .-, Uz
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be the continued fraction expansion of —fw?. If for 1 < i < t, z; = 2% is
the i-th complete quotient of —fw?, then a; #~ 1.
Proof. Assume that for ¢ > ¢, a; = 1. Then, we have :
b; +vD b; +vD —fTrw++vD b, + fTrw b; + fTrw
xTr; = — — + = xp + — .
2a; 2 2 2 2
hence b 4 FI° bi + fT
i TW i rw
ui =[] = [wo] + ——F—— =uo+ ———5——

where the square bracket [u] means the integral part of u, and z; —u; = xy — uo
so that z;41 = x;1 contradicting the fact that ¢ is the period. =

Lemma 9 - Let K = Q(\/d), the real quadratic field associated with the positive
square-free integer d, and Oy an order of index f in K. If

—fw? = [uog, U1, .-, Ug)

is the continued fraction expansion of —fw?, then in general, — fw’ is not re-

duced.

Proof. We have — fw? = ug + i hence z; = fw:ij—uo ; but 2y = fw_Tluo <0
because ug+ fw > 0 and, since ug+ fw > fw > w > 1, we have | 27 |= m <
1. Therefore

| Vd>Vv2>1,ifd=20u3 (mod 4),
T B> 15 5 1 ifd= 1 (mod 4),

showing that — fw? > 1. Now, set x = — fw?. Then,

o _ ¢ —fVd,ifd=2ou3 (mod 4),
DL — ut — s
—1(1_2‘/3), ifd= 1 (mod 4).

Therefore, 7 is negative. Moreover,

fVd<1,ifd=2ou3 (mod 4),

—-1<z7 <0<
{ VD 1, ifd= 1 (mod 4).

The first case is impossible. In the second case, since d = 1 (mod 4), we have
Vd>+/5>2and as LY9=D 1 we have fVd < f+2=2f < f+2ief <2

therefore f = 1, whence v/d < 3 and necessary d = 5 proving that in general,
— fw? is not reduced. m

Lemma 10 - With the notations and hypotheses of lemma 9, let u+vfw € Oy
be. If u+vfw is a unit of Oy, then 7 is a reduced of — fw?.
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Proof. Assume that ¥ > — fw? ; then we have

_ U_E‘:|U+vj'w"|= 1
‘ fw v v vlu+vfw|
If 2 = fw > 2, then
’—fw"—g 1 1

v =v|u-|-'ufw|<2—z)2'
Thus 2 + fw > —w? + fw > —w? +w. But
o — W — 2v/d>2,ifd=2o0u3 (mod 4),
Tl Vd>+5>2,ifd= 1 (mod 4).

Therefore, in every case w — w? > 2 and theorem 4 shows that = is a reduced
of —fw?.
Now, assume that ;; < —fw? ; then we can write :

’—fw“ u’_ -1 v _ |lutvfw?| _ 1
vl | fwr u| Jufwo| u|fwolu+vfw|
But since -
—fo? + L (—fu?) fro > —ful + fo 2w — w22

U

and as - B
|feo |1+ = fuo| = —fu? + 2 (—fu) fuo

we get

1
, — < 2.
ulfw| u+vfuwl

Therefore theorem 4 shows that 7 is a reduced of — fiz“ . It follows that, from

lemma 7, 7 is a reduced of — fw?. Therefore, in the two cases, ¥ is a reduced

of —fw?. m

3 The finding of the real units of O

In the ensuing of this work, we shall write O }‘ for the goup of units of Oy and
in view of proposition 5,
V§ = Pt—1 + q—1fw.

Theorem 11 - Let K = Q(\/&), the real quadratic field associated with the
posilive square-free integer d, Oy an order of index f in K and
—fw? = [ug,T1, -, Uz

the continued fraction expansion of — fw?. If 2’:—: is its (t — 1)-th reduced and if
vy is a unit of Op of norm N (Oy) = (—1)*, then vy is the smallest unit greater
than one of Oy.
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Proof. Let v be a unit of Of. Write v for v = u + v fw. Then we have

o — W — 2v/d,if d=2 ou 3 (mod 4),
B Vd,ifd= 1 (mod 4).

Therefore r
Y= =7+=->0;
Y

this implies v f(w — w?) > 0, so that v > 0.
Let us show now that v > 0. We have :

1
= =7 |=lutvfw’ |<1l=>u>—-1—vfw;
from this, we deduce that u > 0 except only in the case : f# 1 ord # 5. In
this case, since from the proof of lemma 9 fw? < —1, we have u > —1—vfw? >
—1+ v > 0 so that v > 0.
Now, when f =1 and d = 5, we have :

u>—1+v(\/52_1).

Ifv > 2, thenu > —1+v5—1=+5-2>0;
If v=1, then u > —1+ @ = ‘/32_3 ~ —0.38 ; therefore u > 0,
but if w = 0, we have vfw € (9;5.

It follows that u > 0, v > 0 except when d = 5 and f = 1. Thus,
taking G = O}( and v = g in lemma 6, we see that there is in ¢/ a smallest
unit vy > 0. Write v, for v, = r + sfw with r,s > 0. But, from lemma 10,
% is a reduced of — fw? of period t. Since Z::i is its (¢t — 1)-th reduced, we
have ged(pi—1,91—1) = 1. It remains to show that »r = p;_1, s = q—1. Let
d =pged(r, s) ; then we may write :

r=dr',s=d¢ ;

whence, vy = d(r’ + s’ fw). But, according to proposition 5, v; € 0}( is of
norm (—1)%, therefore

N(yp) = N + 5 fw) = %1

which implies d = 1. Hence, necessarely we have r = p;_1, s = ¢;—1 so that
Yy = Pt—1 + qt—1fw > 1. This proves that v, is the smallest unit of Oy which
is greater than one. m

Definition 12 - v =pi—1 + gt—1fw is called the fundamental unit of Oy.

With lemma 6 and the proof of theorem 11, we may write :

u={760}<:'y>1}.
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Theorem 13 - With the same notations and hypotheses as in theorem 11, every
unit v > 1 is expressed in the form

P ’)’}l = Pnt—1 + Gni—1fw, n>1.

Proof. Let v be a unit of O and write v for v = u 4+ v fw. Since from lemma
10, = is a reduced of — fw?, there exists an integer n > 0 such that = is the
reduced Zﬂ. But 7, is the fundamental unit of Oy, therefore

N('Yf) ==1= N(pn + Qn.fw) = (_1)n_1an—1

which implics that a,—; = 1 and lemma 7 imposcs that n = ¢,2¢, ..., kt, ...
showing that

Uuc {pnt—l + Qnt—lfw) n > 1}

(with d =5,f =1,u = 0,v = 1). As all these numbers are in U, we have the
cquality
U= {pnt—l + qnt—lwa n > 1} .

Finally, the two sequences (fy’})nzl and (Pnt—1 + Gni—1 fw)nZl are strictly in-
creasing so that necessarely v = Yf = DPnt—1+ Gnt—1fw, n>1. =

Theorem 14 -The group of real units of Oy is :
O;ﬁ ={* (i1 +q_1fw)" :neZ}.

Proof. Let v € Of be. If :

-y > 1, then with theorem 13, we see that v = (p;_1 + gt—1.fw)"”, n > 0.

-0 < v <1, then % € (’);f and % > 1 therefore % = (pt—1+ q_1fw)",
n>1and v = (pi—1 + @—1fw)™, m< —1.

-y < 0, then —y € OF and —y > 0 so that v = — (p—1 + ¢—1fw)",
neEZ n

Remark 15 - O;f can be written also as :

O;f =+ (ps—1 + Qt—lfw)z'

4 Description of solutions of Pell’s equations (1.5
and (1.6)

In this section, we give the family of solutions of each separate equation of
equations (1.5) and (1.6).
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4.1 Equation (1.5)

Theorem 16 - Let d and f be two integers > 1 with square-free d. If d =2 or
3 (mod 4) and if

f\/& = [’LL(), UYLy ooy ut] 5
is the continued fraction expansion of f/d in which Z::i is the (t—1)-th reduced,
then equation (1.5) has always the solution p;_1 + qi—1 f/d and all its solutions
are given by

z+yfvVd=+pi_1+ q_1fVd)", n € Z.

Proof. Since d = 2 or 3 (mod 4), it is well-known in section 1 that Oy =
Z+ Zf+/d is an order of the quadratic field K. As Z—:j is the (¢ — 1)-th reduced

of —f(—+V/d), by proposition 5, Y = pPt—1 + g_1fVd € (’)}( and theorem 11
shows that v, is the smallest unit greater than one of Of so that

N(pi—1 + Qt—lf\/a) —p2  + @ fPd= =1

This proves that the pair (p;—1,q:—1f) is a solution of (1.5). Therefore with
theorem 14, we see that the solutions in integers numbers (z,y) of (1.5) are
obtained as follows : take the fundamental unit p;_1 + g—_1 f\/(_i € Oy and put

z+yfVvd=+pi_1+q_1fVd)", neZ.
The solution (z,y) lists all the solutions of (1.5). m

Definition 17 - The solution (pi—1,qi—1f) or pi—1 + q—1fVd is called the
SJundamental (or the minimal) solution of equation (1.5).

Remark 18 - It is clear that, if the fundamental unit of Oy is of norm 1, (x,vy)
is a solution of equation (1.1) ; then the equation

(4.1) % — df?y? = —1

has no solution. But if the fundamental unit of Of is of norm —1, then the
solutions of (1.1) are of the form

o +yfvVd=£(pi—1 + q—1fVd)*", neZ
and those of (4.1) of the form

z4+yfvVd=+pi1+ q_1fVd)> T, neZ

4.2 Equation (1.6)

Theorem 19 - Let d and f be two integers > 1 with square-free d. If d = 1
(mod 4) and if
Vid—1

fT == [u07u17 ...,’th] s
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is the continued fraction expansion of f‘/"l;1 in which ZZ: is the (t — 1)-th
reduced, then equation (1.6) has always the solution % (2pi—1 +qi_1f+qi_1fVd)

and all its solutions are given by

"
z+yfVd 4 (th_1 +‘]t—1f+(1t—1f\/a) nez
2 2 ’ )

Proof. Since d = 1 (mod 4), it is well-known that Oy = Z + Zf@ is an
order of the quadratic field K. As % is the (¢ — 1)-th reduced of —fl=Nd Ly

2
proposition 5, v; = 3(2ps—1 + q—1f + g1 fVd) € OF and theorem 11 shows
that v, is the smallest unit greater than one of Oy so that

1++d

N (pt—l +qgi—1f 5

1—-d
) =p} 1 +P1@—1f+ G 1 f (T) =41,

that is to say

2pt 1+ g1 f 2_ 91 f 2d=i1
2 2 )

This proves that the pair (2pt_1J2er_1f, Qt_zlf) is a solution of (1.6).

Conversely, if (x,y) is an integer solution of (1.6), then —5—(3:+yf\/3) € Oy (its
trace is  and its norm, by (1.6), is +£1) and hence a unit of Of. As in the proof
of theorem 16, writing %(2171:—1 + qi—1f + qi—1f/d) for the fundamental unit
of Oy, we see that with theorem 14, the solutions in pairs of integers numbers
(z,y) of (1.6) are given by

z+yfvd S (2pt—1 +Qt—1f+Qt—1f\/a) nez
2 2 ’ ’

The solution (z,y) lists all the solutions of (1.6). m

Definition 20 - The solution %(th_l—l-qt_lf-&—qt_lf\/a) or (2”“"1;‘”‘”, q*‘21f
is called the fundamental (or the minimal) solution of equation (1.6).

Remark 21 - The same as in remark 18, replacing =1 by +4.

5 Numerical examples

Example 1. Take d = 6. Then d = 2 (mod 4) is square-free such that Q(1/6) is
a quadratic field. To find the fundamental unit of the order O; = Z+7Z [7\/@ of

the field Q(1/6), we begin by develop the number —7w® = 76 = /294 in
continued fraction. We have :
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V294 = 17 + (v/294 — 17), wo = 17

1 — V294417 _ o | V294413 .. _ g
V294—17 5 - § = 1

5 _ 5(+/294+13) _ /294413 __ 14+ V294—12 P |
V294—13 125 = 25 = 25 0 42—

25 _25(+/294+12) _ /294412 __ V294—12 _

294—12 ( 150 L = g = A+ T, ug =4

6 _6(+/294+12) _ /294412 __ 1+ v/294—13 —
V29i—12 150 = 25 = 25 0 4T

25 _ 25(\/294+413) _ /294413 __ 6 + V29417 . _ 6
V204—13 125 = 5 = 5 » U5 —

5 _ 5(+/294+13) __ _ _
e = = =294+ 17 =34+ (v/294 — 17), ug = 34.
Hence

V294 = [17,6,1,4,1,6,34] .
Thus, we have the following table :
n 0 1 2 3 4 5 6
Unp, 17 6 1 4 1 6 34
Pn 17 | 103 | 120 | 583 | 703 | 4801 | 163937
Qn 1 6 7 34 41 280 8721
p2—294¢2 | 5 | 25 | -6 | —19 ] 5 1

Then, from theorem 11, the fundamental unit of O; = Z + Z [7\/@ is :
4801 + 280.7+/6.
It follows that from theorem 16 all the solutions of the Pell’s equation

z? —294y% =1
are given by :
x +yv294 = £(4801 + 280v294)", n € Z.

Example 2. Take d = 5. Then d = 1 (mod 4) is square-free such that
Q(V/5) is a quadratic field. To find the fundamental unit of the order O3 =
L+7Z [3\/5] of the field Q(1/5), we begin by develop the number 3 ‘/52"1 — @_3

in continued fraction. We have :
VAB=3 1 4 AB5 gy =1

2 2(V45+5) _ V4545 _ V45-5 _
Jiss = 20 0 = Ci10 =1t e, m=1
10 _ 10(v/45+5) _ 4545 __ V45-5 _
V45—5 20 =¥ =54+ 5", ue=1

Hence
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Thus, we have the following table :

n 0 1 2
Uy 1 1 5)
D 1 2|11
an 1 1 6
4p2 + 12p,q, — 36g2 | —20 | 4
Then, from theorem 11, the fundamental unit of O3 is : 7+?2"/5

It follows that from theorem 19 all the solutions of the Pell’s equation
—45y2 =4

arc given by :

z + y/45 _i<7+3\/5)n -
2 o 2 ; :

Example 3. To illustrate the use of remark 21 (or remark 18), take d = 37.
Then d = 1 (mod 4) is square-free such that Q(/37) is a quadratic field. To
find the fundamental unit of the order O = O =Z + Z [\/ 37| of Q(+/37), we

first develop the number @ in continued fraction. We have
V=l — 9 4 VBI=5 ) gy =2

2(v3715) _ A/3BT+5 __ 37—1 _
\/33__5:(12 )_\/_6+o_1_|_\/_6 T |
6 _ 6(VBTH+L) _ /3741 _ V37-5 _
V31 36 =% =1+, ue=1
Y
Hence
V37 —1 -
5 = [2, L1, 5] ;
Next, we constituate the following table :
n 0 1 2 3
Un 2 1] 115
Pn 2 3 5 28
gn 1 1 2 11
4p2 + 4p,q, — 36¢2 | —12 | 12 | —4
Then, the fundamental unit of O is : %3_7

According to remark 21, it follows that all the solutions of the equation
2 -37y* = —4
are given by :

2n-+1
x + y/37 _i<12+2\/37) e
2 - 2 d -
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